Inverse Function Theorem Exercises

Question 1 Consider the following transformations $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$:
i) $\left\{\begin{array}{l}u=e^{x} \cos y \\ v=e^{x} \sin y\end{array}\right.$
ii) $\left\{\begin{array}{l}u=x^{2} \\ v=y / x\end{array}\right.$
iii) $\left\{\begin{array}{l}u=x^{2}+2 x y+y^{2} \\ v=2 x+2 y\end{array}\right.$
iv) $\left\{\begin{array}{l}u=x+y \\ v=2 x y^{2}\end{array}\right.$

For each transformation above:
a) Compute $\operatorname{det}(\mathbf{D} f)$.
b) Find (if possible), using the inverse function theorem, regions where the transformation is locally invertible. If no such regions exist, explain why.
c) Find the image of the square $D=\{(x, y) \mid 0<x<1,0<y<1\}$ under the transformation. Is the image of D locally diffeomorphic to D ?

Question 2 This is problem 8 section 3.5 in the textbook. Is the transformation

$$
\left\{\begin{aligned}
u & =x+x y z \\
v & =y+x y \\
w & =z+2 x+3 z^{2}
\end{aligned}\right.
$$

invertible near the point $(x, y, z)=(0,0,0)$?
Question 3 This is problem 9 section 3.5 in the textbook. Is the transformation

$$
\left\{\begin{array}{l}
u=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} \\
v=\frac{x y}{x^{2}+y^{2}}
\end{array}\right.
$$

invertible near the point $(x, y)=(0,1)$?

